BURNELL

The transmission of pressure through sand and carth

Civil Ængineering

B. S.

1910

UNIVERSITY OF ILLINOIS LIBRARY

$$
1910 \quad \text { B93 }
$$

THE TRANSMISSION OE゙ PRESSIRE ＇THROU（：I SANI ANI）Eん，R＇TII

THESIS

FOR＇IUE

CIVII，ENGINEERING

COIALEGE OF FNGINEERIN（：

UN゙IVHESI＇Y OF ILJIN゙OH゙

1510
P93

UNIV:LRSETY OF THLTNOTS
 COHLEGH OF WNGTNERILG.

This is to certify that the thesis prepared ir

 the Denartment of Theoletical and Apnlied Mechanies by KINGSLEY ABNRR BURNTILL entitled The Transmission of Prussvire through sani and Fareth is approved hy me as furfilline theis part of the recluilements for the legroe of Bacheion of science in civil Tngineerinu.

Approved:

$$
\begin{aligned}
& \text { Pronsor Aalov } \\
& \text { In charge of Theoretical anci Applied lie ohanics. }
\end{aligned}
$$

Approved:

Sa O. Bater.

Professor of civil miginer ming.

THE TRANSMISSION OF PRESSIJRE THROUGH SAND ANJ EARTH.

1. INTRODICTION.

When a concentrated load is placed nn a layer of sand, the pressure is transmitted from grain to grain to the supporting bed or surface. The pressure is usually assumed to be distributed over an area larger than that of the anolied load. The actual distribution of the pressure on the supportinc siurfice is not known. It is the purpose nf these experiments to find the distrinution of pressure through the sand and earth and 2lso to find a suitable and satisfactory method of csrrying on experiments.

Since the solution of the problern will not be inade by any one set of experinents, but rather by a large number of comparable tests extending over a considerable length of time, this thesis is intended more as a beginnine for such a series of tests and for the determination of the best method of procedure than as a complete solution of the problem. The sunject will be discussed under the following heads: II. Description $\cap f$ Apparatus and Nethod used, III. Rxperimental Data and Discusision, and IV. Conclusions. On account of the Iimited time the experiments vith earth vere not carried out.

Digitized by the Internet Archive in 2013

II Description of Apparatius and Method used.
A floor (figure l, n.$) 7 \times \mathrm{g}$ feet of two inch pine planks was built on six I-beans spaced twelve inches edge to edge of flange. The two center I-beams (K) were twelve inch and the other four, two on each side, vere eight inch blocked up so that their top flange was on an exact level with the two twelve inch berms. A 1×8 inch board (T) Was nailed around the edge of the flonr to keep the sand from running off.

A circular hole anout $41 / \lambda 6$ inches in diameter was made in the center of one of the planks three feet from one and of the flonr and midway between the two 12 inch I-beans. The hole wrs fully heveled so that a four inch plug (B) set in it hac plenty of play for a small lateral or tipping movement. The plug which was about six incres lone with its top just flush with the upner surface of the floor, rested on a knife edge (C) of a wooden lever arm (A) 4×4 inches. One end of the lever arm five feet froy the knife eage rested on a pair of platforin scales (F) while the other end, one foot from the knife odge, was supported by a fulcrum (G) ring frore the floor by means of two bolts (H).

This was thought to be the proper method of supporting the fulcrum so that if the floor gave a little When pressure was applied, the fulcrum and lever arm resting on it mould give with it.

Overhead a 24 inch I-heam (L) was fastened to the
10 inch I-beams (M) of the floor above by means of strans

Figure 1.
(N). The beam was hung so that it was inmediately over the center line of the lever arm and nug and on it was marked a point directiy over the center of the plue. From this point other points were marked alone the beam six inches apart. A hydraulic jack (0), usine 0il, was fastened to the lower flange of the 24 inch. I-bean by means of straps (P) so that it could be moved along the bearn in order to change the postion of the joad.

Buildine paper ras laid on top of the fionr to prevent the sand from floving through any cracks and strips of thin sheet rubber ahout three inches ride were put over the plug so that the sand could not get between the plug and the edges of the hole to prevent a perfectly free motion of the plug. Mortar sand, practicaily dry and well tamped was put on the wooden flonr to a dapth of six inches.

The sanc over the pilue was leveled with an ordinary carpenter's level and g. circular plate thirteen and one-half inches in diameter and three-quarters of an inch thick was placed on the sand. This plate was centered over the plug hy means of a plumb hob hung from the merk anove on the 24 inch I-beam. On top of the plate was mat a spherical compression block (v) so as to help in centering the pressure and a wooden strut (R) 8×8 inch was put in between the compression block and the hottom of the jack.

Pressure was applied by means of the punp connected to the jack, and the readings of the pressure on the plue were taken from the platform sanles. The jack and plate were then moved twelve inches from the center of the plug and pressure again apllea.

It vas here folinc that somethine vas materially wrons, fox the scale readings vere hicher with no prosisure on the sand than they vere with a pressure of 5500 pounds. After investigation, it vias folinc that the nressure heing applied directly over the fulcrurn (since botr mere twelve inclies ran the conter of the rxug) caused it to settle, thus allowing the lever arn to draw pwey from the plug which in turn fell away fron tise salla and so relieved the pressure on the plug.

This was remedied by placine the fulcrun on tie concrete fionr (figure 2, J.) so that the pressure from above vould not effect it's stanility. The lever som (1) pas also changed so that the readings of the scale mould be larger. A 3 inch I-beam was used this time with the knife edge (C) three and one half feet from nne end and seven feet from the other and thus making the ratio of the arins 1 to 3. The actual pressure on the plug would then be three times that shown by the scales.

Fxperiments were then made with the pressure applied directly over the plug and at points six, twelve, eighteen, and twenty-four inches from the plug and for the sane points with the layers of sand six, twelve and eighteen inches deep. After these tests mere cornpletea, similiar tests rere run with the sand in a saturated condition.

Three extensoneters (S) at thixd points on the plate fastened to strips of mood (T) which were sunported on the sand at a couple of feet from the plate shomed to what extent the plate sank into the sand.

Figure 2.

Photo of Apparatus.
III. Fxperimental Data and Discussion.

In tha following tablas the values of the pressure $1 s$ the average result of froin folir to six tests.

The values in column 5 sre those pressures on the plug due to the applied lnad and are obtained by subtracting the zero scale reading froun the reading for that lond in column 1 and multiplying the result by three, since the ratio of the lever arin is l to ?. The values in column 1 are used as these are comsidered more acourate than those in colurnn 2 due to the fact that when the pressure is released, friction in the jack keeps the piston from moving until the load has been decreased usualjy fonn 1000 to 1500 pounds.

$$
\text { Column } 6 \text { gives tre unit pressure on the plue (area }
$$

12.53 sq. in.) and colmmy 4 gives the unit pressure of the applied loac on the plate (area $14 \leq .00$ sq. in.).
(

Table 1.
Dry Sand 6" deep.

Table 2.
Drys and 6" deep.
Jack $6^{\prime \prime}$ from plug.

Table 3.

Dry Sand $6^{\prime \prime}$ deep.

Table 4.

Dry Sand 12 " deep.

Table 5.

Dry 5 and $12 "$ deep.

Table 6.
Dry Sand 12 "deep.

11
1

Table 7.

Dry sand 12 "deep.

Table 8

Sand $18^{\prime \prime}$ deep.

Table 9.
Dry Sand 18 "deep.

Table 10.
Dry Sand 18 " deep.

Table $/ 1$

Dry Sand $18^{\prime \prime}$ deep.

Table 12.
Dry Sand 18 "deep.

Table $/ 3$.
Saturated Sand $6^{\prime \prime}$ deep.

Table 14.
S aturated 5 and 6 "deep.

2

4in

nat
2
\qquad

Table 15.

Saturated Sand 6" deep.

Table 16.

Saturated Sand $6^{\prime \prime}$ deep.

Table 17.
Saturated Sand $12^{\prime \prime}$ deep.

Table 18.
Saturated Sand 12 " deep.

保

Table 19 .
Saturated Sand 12 "deep.

Table 20.
Saturated Sand $12^{\prime \prime}$ deep.

Table 21.
Saturated Sand $18^{\prime \prime}$ deep.

Table 22.
Saturated Sand $18^{\prime \prime}$ deep.

8

$-$

Tin

$1 u-\operatorname{Han}$

11

Table 23.
Saturated Sand $18^{\prime \prime}$ deep.

Table 24
Saturated Sand $18^{\prime \prime}$ deep.

要

In the following plates of curves the points of each curve are the unit pressures at different distances from the center of the plug for the same spplied load.

A Elance at the curves shows the pressure transmitted through the sand varies very uniformaly with the intensity of the load.

With dry sand having a depth of six inches (plate 1) it is seen that the curve is nearly a straight line. for trelve inches of denth (plate ?.) the curve is far from a straient line anc the difference hetween the values of the intensity of pressure for the load directly over the plue and six inches from it is not so inerked as for the sand six inches deep. With eighteen inches of sand (plate 3.) the values mith the load applied dilectly over the plug are decided sinallex than with the load six inches from the center of the plug. This sloors that at a depth of twelve inches an arch action takes place vhich reduces the intensity of pressure directly under the lond. A tendency towards arching is also shown for the smaller loads for a depth of twelve inches (plate 2).

With saturated sand having six inches of depth (plate 4), the pressure is distributed farther than with dry sand, for with the former a prossure is observed at eighteen inches from the center of the plug while with the latter nome is observed. From twelve inches out to eighteen inches the intensity of pressure falls away very slomly as is seen by the very gradual slope of the curves. Also fir twelve inches of saturated sand (piate 5) the intensity of pressure falls off quite gradlazly betveen the distances of twelve and
eichteen inches from the center of the plue. For eichteen Inches of saturated sand (plate 6) the curves show a tendency tovards arch action. For the smaller 10ads, 500 to $\mathbf{1 5 0 0}$ pounds, the curves show that an arch action takes place but for the higher loads the arch is evidently brokon domn.

The tables and curves shov that all the intensities of pressure for saturated sand are higher than are the intensities of pressure for the corresponding loads on the dry sand. This is pronahly due to the fact that the water has 2 lubricating effect on the particles of sand aljoving them to slide more freely over each other.
Plate I.

PlateIIT

Plate \bar{Z}

IV. CONCLUSIONS.

When a pressure is tramsnittod throuih sand to n hed or surface, the intensity of the pressure on the bed varies at different distances from the center of pressure of the applied loxd, hut this intensity is not inversely as the distance.
2. The pressure decreases at a much slower rate beyond twelve inches froin the center of pressure than it does from the center of pressure out to twelve inches (for depths up to eighteen inchesd.
3.FOX a depth of six inches to twelve inches there is no arch action shomn by these experiments.
4.With dry sand at a depth of eighteen inches thore is an arch action with a decided decrease of intensity of pressure directly under the lnad.
5. Saturated sand at eighteen inches of depth has a slight arch action for light loads, up to ten or eleven pounds per square inch, but for greater loads the arch is broken down.
6. For the same load greater intensities of pressure are transmitted through saturated sand than dry sand.
7. From the uniformity of the corresponding tests and the general similarity of the curves for various applied loads for the same depth of sand, the method used seems a very satinfactory one for further experiments. The method is also very satisfactory with reciards to the handilng of the apparatus. From the expexience gained, the writer recominend that further experimants be carried on by the same method

